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various formats.

File Reader

This node can be used to read data from an ASCII fie or URL location. It can be configured to read in

When you open the nede's configuration dialog and provide a fiename, it wil try to guess the reader's
settings by analyzing the beginning of the fie. Check the resuls of these settings in the preview table. If

the data shown & not correct or an error  reported, you can adjust the settngs manualy (see below).
When the node & executed it reads in the entire file and caches it in a temporary file for faster access by
the connected successor nodes. It akso stores all possible values it came across for each column.

Dialog Options

ASCII file location

Enter a vaid fie name or URL. When you press ENTER, the fie is analyzed and the settings pre-set.
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A Brief History of KNIME KNIME

2004: KNIME development commences
2006: KNIME v1 released
2006: Spin-off in Konstanz, Germany
2006-2007: First commercial partners
2008: KNIME moves to Zurich
2010: Enterprise products released
Status Quo:
- KNIME used in 30+ countries:
+3000 Organizations
~30% Life Science
~70% Business Intelligence, Analytics, Data Mining
+50 Very Active Community Developers
KNIME 2.8 released in July 2013



File Reader

B

Exicel impaort

Database Connector

Mode 0:1:8

PMHML Reader

Vendor independent predictive

model

KNIME KNIME

KNIME loads and integrates data from diverse data sources:
« Different data bases
« Various file formats (CSV, XML, SDF, etc.)




KNIME ) KNIME

KNIME provides huge repository of
modules for easy-to-use, modular
« Data preprocessing

« Data fusion

« Data transformation




In addition to standard data
mining techniques, KNIME
adds cutting edge data
analysis algorithms.
(...thanks to its academic
roots)




KNIME
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KNIME

Bliccinn Waliea

Due to its open API and “node-in-a-sandbox”-approach

additional (also external) tools are easily integrated,
e.g.

» Access to the statistics tool R

« Complete integration of the machine learning
library WEKA

« Application area specific integration, e.g. CDK
(Chemical Development Kit), RDKit, ImageJ, ...

KNIME is Eclipse-based: Integrating other Eclipse
projects such as BIRT, DTP, etc. provides even more
functionality
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~ KNIME

KNIME Selected Node Highlights

Over 1000 native and embedded nodes included:

Statistics

Data Mining
Time Series
Image Processing
Neighborgrams
Web Analytics
Text Mining
Network Analysis
WEKA

R

Database Support
ETL

Text Processing

Data Generation
XML Support

PMML Support

Social Media Analysis
Business Intelligence
Community Nodes
3rd Party Nodes




~ KNIME

Social Media Data
Water Water Everywhere, and not a drop to drink

Linked [T}

twitterd
A KNIME

Google+

Slashdot

Sk VPE] /.




KNIME

Social Media Data

Water Water Everywhere, and not a drop to drink

What companies do with it:

 Download and keep

« Topic [Shift] Detection (email content routing, detect
market interest shift, clinical studies, query non
structured DBs, ...)

« Sentiment Analysis (marketing, polls, elections, ...)
« Connection Analysis (influencers, risk analysis, ...)

13



KNIME

Social Media Data
Water Water Everywhere, and not a drop to drink

The Analysis Tools:

 Web Crawlers

* Visual Exploration

* Topic Detection (Text Mining, NLP, Ontologies)
« Sentiment Score (Text Mining, NLP)

* Influence Score (Network Analytics)

* Find Groups (Predictive Analytics)
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Case Study Example: Slashdot Data

Slashdot *E! Library

stories
Shmoocon Demo Shows Easy, Wireless Credit Card Fraud _
recent i

Posted by timothy on Monday January 30, @12:25PM & i ,)
popular from the now-how-much-would-you-pay dept. f\

.
ask slashdot Sparrowvsrevolution writes with this excerpt from a Forbes piece recounting a scary B aS I C N u | I I b e r S -
L]

demo at the just-ended Shmoocon:

Post

book reviews
"[Security researcher Kristin] Paget aimed to indisputably prove what hackers have

games long known and the payment card industry has repeatedly downplayed and denied:

wirelessly read a volunteer's credit card onstage and obtained the card's number
and expiration date, along with the one-time CVV number used by contactless

iri; cards to authenticate payments.” 24 5 3 2 u S e rS
491 threads with

RepiytoThis  Parent « 15 - 843 responses

science Re: Itis news in that this has now been brought up to the credit card companies in a mar

e 12-50
security Re:ls this news? (Score:3, Insightful) 1 7 u Se rS
by JoceS40k (829181) on Monday January 30, @01:23PM (#38867051) Homepage
Eeply to This Parent

Re: It's hyperbole because the attacker has to be incredibly close to you. They actu . .
Re: Not according to TEA There are many situations where we get close enough i 6 O m al n to p I CS
C t Re: So | take it you've never been in a crowded area with lots of people around lik
Om men S Re: | was replying to the person before me who was saying it wasn't hyperbole

Re: The CVV used here, | believe, isn't the one printed on the back of the card. | beli I T - . P I o e
Re: Which is one of several reasons why | only have Credit Cards S e eCte O p I C " O I t I C S

Re: My cell phone is has NFC and it is able to scan one of my credit cards for a decent

idle

Re:ls this news? (Score:d, Insightiu

hardware by Jeng (926980) on Monday January 30, @12:34PM (#38866545)

linux
It is news in that this has now been brought up to the credit card companies in a manner whic

storage

Why is it "hyperbole” if somebody can drain hundreds of bank accounts wirelessly with

Re: Paget's firm has been working on a more sophisticated fix: a credit-card-shaped protecti 1 5
1 reply beneath your current threshold.



KINIVIE
Case Study Example: Slashdot

* Very rich data sources about customers !

« We want to establish:

Sentiment Analysis

* How users feel about the discussed topic
* Whether it matters how users feel Network Anajytics
* A more general abstraction of the results

Clustering

16



Sentiment Analysis
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ZAKNIME
Slashdot - Text Mining
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LAKNIME
Slashdot - Text Mining

Most Positive User dada21
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KNIME

Slashdot - Sentiment Analysis

16016 positive users
7107 negative users

Most positive user: dada21 (2838 positive/1725 negative words)
Most negative user: pNutz (43 positive/109 negative words)

Which Topics have positive users in common ?

- Government
- People

- Law/s

- Money

- Market

- Parties



Network Creation

Slashdot * OIS Library

stories
recent

popular

ask slashdot
book reviews
games

idle

yro

cloud
hardware
linux
management
mobile
science
security

storage

Shmoocon Demo Shows Easy, Wireless Credit Card Fraud

| s
Posted by timothy on Monday January 30, @12:25PKM u? i ,,I
from the now-how-much-would-you-pay dept. \a-)

Sparrowvsrevolution writes with this excerpt from a Forbes piece recounting a scary
demo at the just-ended Shmoocon:

"[Security researcher Kristin] Paget aimed to indisputably prove what hackers have
long known and the payment card industry has repeatedly downplayed and denied:
wirelessly read a volunteer's credit card onstage and obtained the card's number
and expiration date, along with the one-time CVV number used by contactless

cards to authenticate payments.”

Re:ls this news? (Score:5, Insightful)

by Jeng (926980} on Monday January 30, @12:34PN (#38366545)
It is news in that this has now been brought up to the credit card companies in a manner whic

Reply to This  Parent

Re: It is news in that this has now been brought up to the credit card companies in a mar

Re:ls this news? (Score:3, Insightful)

by JoceB40k (823181) on Monday January 30, @01:23PM (#38857051) Homepage
Why is it "hyperbole” if somebody can drain hundreds of bank accounts wirelessly with

Reply to This Barent

Re: It's hyperbole because the attacker has to be incredibly close to you. They actu
Re: Mot according to TFA There are many situations where we get close enough 1
Re: Soltake it you've never been in a crowded area with lots of people around lik
Re: | was replying to the person before me who was saying it wasn't hyperbole
Re: The CVV used here. | believe, isn't the one printed on the back of the card. | beli
Re: Which is one of several reasons why | only have Credit Cards
Re: My cell phone is has NFC and it is able to scan one of my credit cards for a decent
Re: Paget's firm has been working on a more sophisticated fix: a credit-card-shaped protecti
1 reply beneath your current threshold.
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Topic Graphs
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= e p————— O b B E
s =
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Network Reader
)| @z eo o
with computed stats MNASA send to visone
Interactive Table

browse topic graphs
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Topic Graph: NASA E
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Topic Graph: Sci-Fi
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& KNIME
Hubs & Authorities

e Hubs = Followers
.. e sers with hub and
« Authorities = Leaders authority weights and

other features

Data loading, network creation and filtering Leader and follower score  Visualization Scatter Plot
Metwork Creator

[ arg |
- D
JeD) bject Inserter Filter Extract largest Authority & Follower vs
Table Reader| Anonymous filter  Create edge table anonymous node component hub weight Feature Table (olumn Renanme
R View (Local)
- A At e
(8]
Ece)
(FCe) Filter article and link post user with compute CHID) (CIED
L IIL comments of referenced post/thread autharity hub [E]
anonymous coward T & hub weight & Fig. 5
with R authority Follower vs leader
Filtering anonymous users and creating network Centrality index to

define hub weight
and authority weight
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Authority score

KNIME

Hubs & Authorities

/
dada2l
Carl Bialik from the WSJ
Tube Steak
Doc Ruby
|
] [ |
u
[ |
|
99BottlesOfBeerinMyF
Hub score 1 27



KNIME: Bringing it all together

Users with hub and authority
weights and other features

Data loading Network creation and analysis Visualization of combined results from text and network mining
Network Creator ) R View (Local)
Network Analysis
¥
| G=)| T e Filter Extract largest  Authority & CIEa)]
Table Reader Anonymous filter  Create edge table ject anonymous node  component hub weight Feature Tal . Fig. 8
ID  Column Rename Java Snippet [ | _ ) of attitude
@ &“ E E ﬁ _— vs. leader score
p— (8| p———— 3
(=) "
|G| Filter article and gkd weight based link post user with TS CIaa) R View (Local)
Slashdot comments of on level of attitudes authori hub (CI| [E]
referenced post/thread ty e
anonymous coward user & hub weight & g
with R authority
. e
Text processing and sentiment analysis .9 Level of attitude
s. follower score
Sorter R View (Local)
Slashdot  Strings To Document  Col Filt: .
AL umen Fer Dictionary tagger Dictionary tagger Document scoring User Scoring m
:>E> f= =fF [ £ i@i b £ = [}_/—D = \W E
=9 =9
preprocessing — . . draw negative Fig. 10
create documents accumulation of E.C.CUmU|EtIOI'1 m_c users last  Follower score
tag positive words /tag negativewords  positive and negative  positive and negative ve leader score
File Reader Subjectivity Corpus word frequencies, word frequencies,
E ﬂ document scoring  user scoring and binning
=9 preprocessing TeXt A n al yS IS
Subjectivity corpus

Users bins: positive,
negative, neutral
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WebHosting Guy
\

Leader score

S

_ 99BottlesOfBeerlnMy

0.6 0.5 1.0

Follower score

Do¢

F

> Ruby
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=4 4 4

~  KNIME
What we have found ...

ne positive leaders
ne neutral leaders
ne negative leaders

ne inactive users

What identifies each group?
How do | identify a new user?

How do | handle each user?

30



n Mode Repasitolﬂ

e

[ gy 10
i [ Database
b Sy Data Manipulation
i 4, Data Views
> ¥ Statistics
4 @ Mining
[» 1=5 Bayes
[» T=+ Clustering
[> l=F Hule lnduction
[+ 1=+ Meural Network
[» 1=+ Decision Tree
[» =% Misc Classifiers
[» 1=+ Ensemble Learning

[+ =% Item Sets / Association Rules

> =% MD5S
[ =% PCA
[ =5 SV

I» 15 Flow Control

i A Misc

[ KMIME Labs

[» w Time Series

[ ¢1)5 Quick Form

aRR
[+ =% Local
[» =% Remote
=10

[~ Reporting

i W Testing

a ¥ Weka
[ ® Classification Algorithms
[ = Cluster Algorithms
[» ¥ Ascociation Rules
[+ T Predictors
[P ol 0]

b XML

KNIME

Why Clustering?

No a priori knowledge (not
even on a subset of users)

Prediction and interpretation
capabilities required
.

k-Means algorithm

31



~ KNIME
Re-sampling the Training Set

k=10

=9 &9
text+network combined Node 2

you need to enter
a valid path

33



KINIVIE
The k-Means Clusters

Leaders, Followers, Positive and Negative Thinkers

Leader = high authonity score, low hub score
Follower = high hub score, low authority score
Positive Thinker = high Good.Bad.Rating (green)
Megative Thinker =low Good.Bad.Rating (red)
Neutral Thinker = middle Good.Bad.Rating (gray)

std(AuthScore) sttl{HuhS::ﬂre} GoodBadRating

Cluster Name Cluster Size Auth

cluster_0 29 0,07 0,04 0,18 0,08 0,98
20 0,11 0,08 0,27 0,11 0,31

22 0,01 0,02 0,03 0,03 0,55

— 6 0,66 0,15 0,81 0,31 1,00
cluster_4 42 0,03 0,03 0,06 0,04 0,75
cluster_5 14 0,19 0,07 0,44 0,12 0,96
cluster_6 89 0,02 0,03 0,05 0,04 0,35
cluster_7 8 0,03 0,03 0,08 0,06 0,64
cluster_8 77 0,00 0,01 0,02 0,02 0,50
cluster_9 20 0,08 0,05 0,23 0,07 0,75
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The k-Means Clusters

Authority Score
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KNIME

Additional Discoveries

There are only very few real leaders!

Authority and hub scores identify active participants
rather than leaders.

Superfans can be found in cluster_3

Negative and (sigh!) active users are collected in
cluster_1.

Neutral users are usually inactive (cluster_2, cluster_7,
and cluster_38)

Positive users with different degrees of activity are
scattered across the remaining clusters.
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The operational Workflow

| Pre-processing Equal Size Sampling

| Table Reader  Column Filter  [Normalizations

B

| [r=q] normalizations of

to prototypes

text+network combined MNode2 Auth Score attitude color extract prototypes

features from model

| you need to enter Hub Score green= positive EEEEEEEEEEEEEEEEEEEEEEEEEEEN

avalid path Attitude red= negative
gray = neutral
| Sorter Data to Report
—im——fg
|
by authority score cluster_3
| Authority Score
ve. Sorter Data to Report
Hub Score
i
by authority score cluster 1

Assignment of new data 37



KNIME

Notes

MPQA Corpus: publicly available Subjectivity

Lexicon (http://www.cs.pitt.edu/mpqa/lexicons.html)
User Characterization is Sum -> Mean

NLP: No sentence splitting, no negation
identification.

For a more refined syntax-based sentiment
analysis -> ,,External Tool“ node
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o KNIME
e

99%
Mode b

External Tool Node

The ,,External Tool“ node executes
external program from command line

1. Writes input data to an input file

2. Calls Tool to run on input file and command line
options and to write results to output file

3. Reads output file and presents data at output
port
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Alternative Sentiment Analysis

Free non-interactive Command Line running
Tools for Sentiment Analysis not found

SentiStrength v2.2 (still interactive)

External Tool and
Generic Web Service Client 40




ZAKNIME

eb Crawling Workflow

Community Web
Crawler Node

XML Parsing Nodes
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Next Steps

Integrate topic information

Integrate user demographic and
behavioural information

Discover [time series] patterns for early
detection of negative users and superfans

Try other techniques, maybe even on
manually segmented data, to discover new
user segments
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Where do | find more?

Whitepaper: www.knime.org/white-papers

Includes Complete Workflows + Data
- text mining
- network mining

- combined analysis
(note the above 3 process huge data and require 16G memory)

- clustering

Open Source Software: KNIME www.knime.com
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